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Introduction

Introduction

In this lecture, we review some new concepts involving weighted least squares, evaluation
of model fit, sandwich estimators, and bootstrap confidence interval calculation
introduced in ALR, Chapter 7.
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Weighted Least Squares Estimation

Weighted Least Squares Estimation

Suppose that the conditional mean follows the linear regression rule, but the conditional
variance does not, i.e.,

E (Y |X = xi ) = β′xi (1)

Var(Y |X = xi ) = Var(ei ) = σ2/wi (2)

The matrix equivalent of the above is

y = Xβ + e Var(e) = σ2W−1 (3)

Weighted Least Squares (WLS) estimation minimizes, under choice of β, the function

RSS(β) = (y − Xβ)′W(y − Xβ) (4)

= e′βWeβ (5)

=
∑
i

wie
2
βi

(6)
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Weighted Least Squares Estimation

Weighted Least Squares Estimation

The solution to the WLS estimation problem is well-known to be

β̂ = (X′WX)−1X′WY (7)

Since W = W1/2W1/2, we can consider redefining the problem as follows. Let
z = W1/2y, M = W1/2X, and d = W1/2e.
What will the covariance matrix of d be?
Since d = W1/2e, it follows that
Var(d) = W1/2 Var(e)W1/2 = W1/2(σ2W−1)W1/2 = σ2W1/2W−1W1/2 = σ2I.
Since d will have covariance matrix σ2I, all the previously developed mechanics of OLS
regression apply to the model

z = Mβ + d (8)

In OLS regression, β̂ = (M′M)−1M′z which is easily shown (C.P.) to be equal to
(X′WX)−1X′WY.
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Weighted Least Squares Estimation

Weighted Least Squares Estimation

The conclusion from the previous slide is that if we have a set of weights, we can simply
rescale the criterion variable and predictors by these weights, then apply ordinary least
squares regression to the transformed Y and X variables.
Some key questions remain:

1 How, in practice, do you get the weights?
2 Can R simplify the calculations and do them automatically?
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Getting the Weights

Getting the Weights

Known weights wi can occur in many ways. If the ith response is an average of ni equally
variable observations, then Var(yi ) = σ2/ni , and wi = ni .
If yi is a sum of ni observations, Var(yi ) = niσ

2, and wi = 1/ni .
If variance is proportional to some predictor xi , Var(yi ) = xiσ

2, then wi = 1/xi .
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An Example From Physics

An Example From Physics

An experiment was carried out with a beam having various values of s, the square of the
total energy in the center-of-mass frame of reference system. For each value of s, we
observe the scattering cross-section y , measured in millibarns (µb).
A theoretical model predicts

E (y |s) = β0 + β1s
−1/2 + relatively small terms (9)

The theory makes quantitative predictions about β0 and β1 and their dependence on
particular input and output particle type.
Data for the π− meson are in the data file physics in ALR4.
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An Example From Physics

An Example From Physics

The data file entries represent many observations per cell. As a result, the relative
conditional variances of y |s = si are known to a high degree of accuracy. The conditional
standard deviations are given in the data file in the variable SD.
Using the approach in ALR section 5.1, let’s assume that the conditional variances are of
the form Var(y |s = si ) = σ2/wi .
However, before we can proceed, we need to recognize a subtle technical problem.
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An Example From Physics

An Example From Physics

Note that we have 10 “known” conditional standard deviations, but 11 parameters to
estimate. This contrasts with the more common situation where the weights are known
but the variance factor σ2 is not. For identification, we arbitrarily set σ = 1, and treat the
entries in the data file as 1/

√
wi .

In effect, this allows us to use the model in a situation in which the conditional variances
are known.
x in the data file is s−1/2, so predicting y from x is equivalent to predicting it from s−1/2.
If the model is correct, the standard error of estimate should have an estimated value of 1.
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An Example From Physics

An Example From Physics

> m1 <- lm(y~x,weights=1/SD^2,data=physics)

> summary(m1)

Call:

lm(formula = y ~ x, data = physics, weights = 1/SD^2)

Weighted Residuals:

Min 1Q Median 3Q Max

-2.3230 -0.8842 0.0000 1.3900 2.3353

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 148.473 8.079 18.38 7.91e-08 ***

x 530.835 47.550 11.16 3.71e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.657 on 8 degrees of freedom

Multiple R-squared: 0.9397, Adjusted R-squared: 0.9321

F-statistic: 124.6 on 1 and 8 DF, p-value: 3.71e-06
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An Example From Physics

An Example From Physics

We note that the R2 value is quite high, but also that the standard error of estimate is
1.66, not the 1.0 that we expected.
One reason that a standard error of estimate can be higher than a “known” value is if the
form of the regression function (linear in this case) is wrong. Let’s take a look at the
regression of y on x .
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An Example From Physics

An Example From Physics

> plot(physics$x,physics$y)

> abline(m1)
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An Example From Physics

An Example From Physics

We can see that there is a nonlinear trend in the data. In fact, there is a significant lack
of fit in these data.
In the next section, we examine a test of fit that can be applied in the case in which the
standard error of estimate is assumed to be known.
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Testing for Fit, Variance Known

Testing for Fit, Variance Known

If σ̂2 is too large, we may have evidence that the mean function is wrong in our model.
In the strong attraction data, we assumed σ2 = 1, and that the stated model was linear.
If the model is correct, the conditional variances around the regression line after using the
weights should all be close to the actual conditional variances.
If the estimated σ2 exceeds its theoretical value, this can be evidence that the model is
incorrect.
From our previous output, we see an estimated residual standard error of 1.66, which
translates into an estimated residual variance of about 2.74.
We perform the classic χ2 significance test discussed in Psychology 310,

χ2
n−p′ =

(n − p′)σ̂2

σ2
=

RSS

σ2
(10)
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Testing for Fit, Variance Known

Testing for Fit, Variance Known

From the anova table we see that RSS is 21.953, which in this case (since we are testing
that σ2 = 1) is also the test statistic with 8 degrees of freedom.

> print(anova(m1),digits=6)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 341.991 341.991 124.629 3.7104e-06 ***

Residuals 8 21.953 2.744

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Testing for Fit, Variance Known

Testing for Fit, Variance Known

This is a 1-sided test. If the model is correct, the conditional variance should be 1.0. If it
is incorrect, the conditional variance will be higher than 1.0.
Consequently, we can calculate the p-value for the χ2 test as

> 1 - pchisq(21.953,8)

[1] 0.005003683

The test rejects beyond the 0.01 level, indicating that we have “significant lack of fit.”
We could try a transformation.
An alternative approach is to try adding a quadratic term.
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Testing for Fit, Variance Known

Testing for Fit, Variance Known

The quadratic function fit is signficantly better than the lineara, as shown by the p-value
of around 0.00038 in the ANOVA table.

> m2 <- lm(y ~ x + I(x^2), weights=1/SD^2, data=physics)

> anova(m2)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 341.99 341.99 742.185 2.303e-08 ***

I(x^2) 1 18.73 18.73 40.641 0.0003761 ***

Residuals 7 3.23 0.46

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Testing for Fit, Variance Known

Testing for Fit, Variance Known

From the table, we see that the residual sum of squares is now only 3.23, so the p-value
for the χ2 test of fit is now

> 1 - pchisq(3.23,7)

[1] 0.8629415

Let’s replot the linear function along with the quadratic on the next slide.
We can see a big improvement.
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Testing for Fit, Variance Known

Testing for Fit, Variance Known

> plot(physics$x,physics$y)

> abline(m1,col="red")

> lines(physics$x,predict(m2),type="l",col="blue")

> legend("bottomright",legend=c("Linear","Quadratic"),

+ col=c("red","blue"),lty=c(1,2))
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Testing for Fit, Variance Known

Testing for Fit, Variance Known

In fact, from a model summary, we see that R2 has improved to 0.99!

> summary(m2)

Call:

lm(formula = y ~ x + I(x^2), data = physics, weights = 1/SD^2)

Weighted Residuals:

Min 1Q Median 3Q Max

-0.89928 -0.43508 0.01374 0.37999 1.14238

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 183.8305 6.4591 28.461 1.7e-08 ***

x 0.9709 85.3688 0.011 0.991243

I(x^2) 1597.5047 250.5869 6.375 0.000376 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6788 on 7 degrees of freedom

Multiple R-squared: 0.9911, Adjusted R-squared: 0.9886

F-statistic: 391.4 on 2 and 7 DF, p-value: 6.554e-08
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The Sandwich Estimator

The Sandwich Estimator

One can attempt to construct a model for the unequal variances, by constructing a
regression function to predict the unequal variances, and using the predicted values as
weights.
However, an alternate approach to dealing with heteroskedasticity is based on the fact
that if Ω is the covariance matrix of the errors (and hence of the Yi ), then the OLS
estimate of β, β̂ = (X′X)−1X′Y, has a covariance matrix that can be calculated from the
fundamental theorem of multivariate analysis

Var(β̂) = (X′X)−1(X′ΩX)(X′X)−1 (11)

One can estimate the matrix Ω in a variety of ways. A method called HC3 estimates it as
a diagonal matrix with diagonal entry ê2/(1− hii )

2, where hii is the leverage of the ith
observation.
One can then use the diagonal elements of the estimated covariance matrix as estimates
of the sampling variances of the β̂i , and their square roots as estimated standard errors.
The ALR4 primer for Chapter 7 shows how do do this with some “prepackaged” R
functions.
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The Sandwich Estimator

The Sandwich Estimator

Suppose we return to the sniffer data, and estimate Y from all 4 predictors.
The fit object and summary are

> s1 <- lm(Y ~ ., data=sniffer)

> summary(s1)

Call:

lm(formula = Y ~ ., data = sniffer)

Residuals:

Min 1Q Median 3Q Max

-6.5425 -1.2938 0.0495 1.2259 7.0413

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.15391 1.03489 0.149 0.8820

TankTemp -0.08269 0.04857 -1.703 0.0912 .

GasTemp 0.18971 0.04118 4.606 1.03e-05 ***

TankPres -4.05962 1.58000 -2.569 0.0114 *

GasPres 9.85744 1.62515 6.066 1.57e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.758 on 120 degrees of freedom

Multiple R-squared: 0.8933, Adjusted R-squared: 0.8897

F-statistic: 251.1 on 4 and 120 DF, p-value: < 2.2e-16
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The Sandwich Estimator

The Sandwich Estimator

We can get R to output the entire estimated covariance matrix of the β̂ as

> vcov(s1)

(Intercept) TankTemp GasTemp TankPres GasPres

(Intercept) 1.070996244 0.008471429 -0.017735339 -0.20656649 0.09308897

TankTemp 0.008471429 0.002358852 -0.001002625 -0.04777401 0.02791454

GasTemp -0.017735339 -0.001002625 0.001696097 0.04149452 -0.04686422

TankPres -0.206566487 -0.047774008 0.041494518 2.49641354 -2.38665198

GasPres 0.093088965 0.027914540 -0.046864224 -2.38665198 2.64111761

We can also see that the square roots of the diagonal elements of this matrix match the
standard errors in the summary output on the preceding slide.

> sqrt(diag(vcov(s1)))

(Intercept) TankTemp GasTemp TankPres GasPres

1.03488948 0.04856801 0.04118370 1.58000429 1.62515157
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The Sandwich Estimator

The Sandwich Estimator

R will directly compute the sandwich estimator for the covariance matrix of β̂ as
> m2 <- hccm(s1, type="hc3")

> m2

(Intercept) TankTemp GasTemp TankPres GasPres

(Intercept) 1.09693263 0.0156217962 -0.0128307109 -0.26718035 -0.03244478

TankTemp 0.01562180 0.0019751133 -0.0006409877 -0.03915604 0.01822761

GasTemp -0.01283071 -0.0006409877 0.0011424888 0.03985576 -0.04344723

TankPres -0.26718035 -0.0391560420 0.0398557591 3.89032393 -3.86151048

GasPres -0.03244478 0.0182276131 -0.0434472283 -3.86151048 4.22652409

We can extract the diagonal elements and take their square roots to yield robust standard
errors.

> sqrt(diag(m2))

(Intercept) TankTemp GasTemp TankPres GasPres

1.04734551 0.04444225 0.03380072 1.97239041 2.05585118
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The Sandwich Estimator

The Sandwich Estimator

We can then use them to construct confidence intervals or statistical tests.
R has a function to do this in the lmtest library.

> library(lmtest)

> coeftest(s1, vcov=hccm)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.153908 1.047346 0.1470 0.88342

TankTemp -0.082695 0.044442 -1.8607 0.06523 .

GasTemp 0.189707 0.033801 5.6125 1.306e-07 ***

TankPres -4.059617 1.972390 -2.0582 0.04173 *

GasPres 9.857441 2.055851 4.7948 4.719e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

James H. Steiger (Vanderbilt University) Dealing with Heteroskedasticity 26 / 27



The Sandwich Estimator

The Sandwich Estimator

Let’s compare these estimates and standard errors with a WLS analysis using
1/TankTemp as weights.

> m3 <- lm(Y~.,data=sniffer,weights=1/TankTemp)

> summary(m3)

Call:

lm(formula = Y ~ ., data = sniffer, weights = 1/TankTemp)

Weighted Residuals:

Min 1Q Median 3Q Max

-0.85390 -0.20990 0.01953 0.17359 0.91192

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.17198 0.99087 0.174 0.8625

TankTemp -0.06090 0.04256 -1.431 0.1551

GasTemp 0.18971 0.03732 5.083 1.38e-06 ***

TankPres -3.18716 1.48894 -2.141 0.0343 *

GasPres 8.67599 1.50856 5.751 6.90e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3557 on 120 degrees of freedom

Multiple R-squared: 0.8886, Adjusted R-squared: 0.8848

F-statistic: 239.2 on 4 and 120 DF, p-value: < 2.2e-16
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